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Flow in two-sided lid-driven cavities:
non-uniqueness, instabilities, and cellular

structures

By H. C. K U H L M A N N, M. W A N S C H U R A AND H. J. R A T H
ZARM - Universität Bremen, 28359 Bremen, Germany

(Received 2 April 1996 and in revised form 6 November 1996)

The steady flow in rectangular cavities is investigated both numerically and exper-
imentally. The flow is driven by moving two facing walls tangentially in opposite
directions. It is found that the basic two-dimensional flow is not always unique. For
low Reynolds numbers it consists of two separate co-rotating vortices adjacent to the
moving walls. If the difference in the sidewall Reynolds numbers is large this flow
becomes unstable to a stationary three-dimensional mode with a long wavelength.
When the aspect ratio is larger than two and both Reynolds numbers are large, but
comparable in magnitude, a second two-dimensional flow exists. It takes the form
of a single vortex occupying the whole cavity. This flow is the preferred state in the
present experiment. It becomes unstable to a three-dimensional mode that subdivides
the basic streched vortex flow into rectangular convective cells. The instability is
supercritical when both sidewall Reynolds numbers are the same. When they differ
the instability is subcritical. From an energy analysis and from the salient features
of the three-dimensional flow it is concluded that the mechanism of destabilization
is identical to the destabilization mechanism operative in the elliptical instability of
highly strained vortices.

1. Introduction
The dynamics of vortices in bounded and unbounded domains is a fundamental

problem in fluid mechanics. For instance, the evolution of shear layers, reviewed
by Bayly, Orszag & Herbert (1988), into two-dimensional arrays of concentrated
vorticity and their subsequent three-dimensional instability has received considerable
attention over many decades due to the practical importance of the subject. It is
believed that the elliptic instability (Pierrehumbert 1986; Bayly 1986) is responsible
for the early stages of the three-dimensional evolution of shear flows, in which the
two-dimensional base flow is transient. The three-dimensional flow structures evolving
from the elliptic instability may, however, be advantageously studied in a stationary
closed flow system.

In this paper we consider the interaction of vortices in a closed cavity with
rectangular cross-section. The vortex flow is driven by a steady motion of two facing
walls tangentially in opposite directions, while the other walls are at rest. This set-up
is a generalization of the well known lid-driven cavity problem (see e.g. Koseff &
Street 1984) and it is similar to the so-called shear-driven cavity flow problem (see e.g.
Neary & Stephanoff 1987). The extension compared to previous studies consists of
introducing a second Reynolds number associated with the movement of the second
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wall, the consideration of a non-unit aspect ratio, and a long extent of the cavity in
the third dimension. The same geometry has been used before, although for small and
time-dependent Reynolds numbers, by Leong & Ottino (1989) and by Jana, Metcalfe
& Ottino (1994) to study chaotic two-dimensional mixing.

The first major work on lid-driven cavity flow is due to Burggraf (1966). In his
two-dimensional analytical and numerical study of a square cavity he found the
basic vortex to develop from a viscous eddy to an inviscid rotational core at high
Reynolds numbers as predicted by Batchelor (1956). In addition to the primary
vortex, secondary viscous eddies (Moffatt 1964) were found to exist in the rigid
corners. Pan & Acrivos (1967) investigated the dependence of the vortex structure
on the aspect ratio experimentally and numerically. For small Reynolds numbers a
sequence of vortices decaying exponentially with the distance from the moving lid
was found as well as self-similar viscous eddies in the rigid corners. The experiments
showed that the main vortex adjacent to the moving wall grows in diameter as the
Reynolds number is increased and suggested a growth of the main vortex diameter
like Re1/2 for large Reynolds numbers and an infinitely deep cavity.

A series of experiments and numerical calculations for the lid-driven square cavity
at higher Reynolds numbers was carried out by Freitas et al. (1985), Koseff & Street
(1984), Koseff et al. (1983), Prasad & Koseff (1989), and Rhee, Koseff & Street (1984).
The authors found that longitudinal Taylor–Görtler-like vortices due to a centrifugal
instability appear as the first three-dimensional flow structure when the Reynolds
number is increased. The size of the Taylor–Görtler-like vortices scales with the
boundary layer thickness which is usually small compared to the linear dimensions
of the container. On an increase of the Reynolds number these vortices become
time-dependent and start to meander (Kosseff & Street 1984). These results were
qualitatively confirmed by numerical benchmark calculations for unit aspect ratio
and Reynolds number Re = 3200 presented at a GAMM-workshop (Deville, Lê &
Morchoisne 1992).

Flow patterns qualitatively different from Taylor–Görtler-like vortices were found
by Aidun, Triantafillopoulos & Benson (1991) in a trapezoidal shaped lid-driven
cavity with a certain amount of through-flow. Spiral waves were observed that
originate in the symmetry mid-plane of the cavity. These waves propagate along the
secondary downstream eddy. Moreover, stationary patterns comprising a different
number of cells could be established by a sudden decrease of the Reynolds number
from values of O(2000) to less than 500. The cells apparently scale with the cavity
dimensions and fill the whole cavity.

Recently, Ramanan & Homsy (1994) investigated the stability of the basic two-
dimensional lid-driven flow in a square cavity with respect to small three-dimensional
perturbations. Using normal modes in the spanwise direction they found the basic
flow to become unstable first at Re = 594 with respect to a stationary mode having a
spanwise wavenumber of k ≈ 2.12. This mode receives its energy from a well-localized
region near the curved separating streamline between the primary and the secondary
downstream eddy, from which it was concluded that the instability is of Görtler type.
At Re = 730 and k ≈ 6 another oscillatory mode was found to become destabilized
to infinitesimal perturbations.

Apart from these investigations focusing on the physics of the flow in lid-driven
cavities, cavity flow has become a standard benchmark problem for testing numerical
codes. Goodrich, Gustafson & Halasi (1990) found two-dimensional time-periodic
flow for Reynolds number Re = 5000 in a lid-driven cavity of aspect ratio two. Since
the numerical code was restricted to two dimensions, it is unknown whether this two-
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dimensional oscillatory flow is stable with respect to three-dimensional disturbances.
For an aspect ratio of one, the flow is definitely three-dimensional at Re = 5000.

The flow over a grooved channel, i.e. the shear-driven cavity flow problem, bears
many similarities with the lid-driven cavity probem. One of the first studies on
pattern formation in shear-driven cavity flow is due to Maull & East (1963). They
performed experiments in a high-speed wind tunnel and found regular structures in
the secondary flow inside a flush-mounted cavity in a range of parameters. Cellular
patterns, time-dependent flows, and hysteresis effects were observed. These flow
structures were highly dependent on the aspect ratios of the cavities used. To date,
the mechanisms leading to the observed patterns are not understood.

Except for this early experimental work, most of the previous studies on shear-
driven cavity flow were based on the assumption that the flow in rectangular cavities is
essentially two-dimensional. Ghaddar et al. (1986) calculated the flow over a periodic
array of grooved channels with rectangular cross-section using a spectral-element
method. For small Reynolds numbers the flow consists of an outer channel flow
and a recirculating flow in the cavities being separated from the outer flow by a free
shear layer. Their two-dimensional linear stability calculation showed, that Tollmien–
Schlichting-like waves triggered by a Kelvin–Helmholtz instability appear above a
critical Reynolds number. Amon & Patera (1989) performed numerical simulations of
the three-dimensional grooved channel flow. They found that the primary Tollmien–
Schlichting wave instability is supercritical in contrast to plane Poiseuille flow. The
two-dimensional wave becomes unstable to a three-dimensional excitation that is
interpreted as a slightly detuned classical channel secondary instability.

On the experimental side, Neary & Stephanoff (1987) investigated the shear-driven
flow over a single shallow cavity. They found shear layer oscillations similar to those
studied by Ghaddar et al. (1986). In addition to the basic frequency associated with
this instability another frequency appeared slightly above the first threshold Reynolds
number. This latter frequency was attributed to a wave running spanwise on the
separated vortex in the cavity.

Here, we investigate the two-dimensional flow and its linear instability with re-
spect to three-dimensional perturbations in a two-sided lid-driven cavity. In §2 the
experimental set-up is described. Section 3 deals with the numerical techniques. The
experimental and numerical results will be presented in §4. In §5 the results are
discussed and compared with phenomena in unbounded flows.

2. Experimental set-up
Experimental studies of lid-driven cavity flow are usually carried out using the

simplest geometry, namely a container with rectangular cross-section. This simple
geometry is also well suited to a comparison with numerical calculations. The technical
realization of appropriate boundary conditions is facilitated, however, if a slight wall
curvature is allowed. Therefore, we use rigid rotating cylinders of large radii as moving
lids in our experiment, similar to Aidun et al. (1991) and Pan & Acrivos (1967). It
is expected that the flow and its stability properties are only marginally influenced
in most cases by the imperfection of the moving walls being cylindrical rather than
plane.

The set-up is shown schematically in figure 1. The cavity is bounded vertically by
two parallel Plexiglas plates of thickness 9.4 mm and width in the x-direction of (58 ±
0.05) mm. The vertical spacing h=(29.0 ± 0.1) mm in the y-direction between the top
and the bottom stationary lids will be used as the reference length scale. The lateral
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boundaries of the cavity are formed by two chrome-plated metal cylinders of radii
R1=(87.55 ± 0.03) mm and R2=(88.25 ± 0.03) mm, respectively. Both cylinders can
be rotated independently around fixed horizontal parallel axes. They are in contact
with the stationary top and bottom lids along their respective edges. The minimum
horizontal distance between both cylinders is (55.4 ± 0.1) mm while the average
horizontal width of the cavity is d=(56.7 ± 0.1) mm. This average value will be used
in the numerical calculations as the width of an equivalent strictly rectangular cavity.
The vertical spacing is enforced by thick front and rear Plexiglas windows of height h.
The length of the cavity in the z-direction is l=(190.0 ± 0.1) mm. Thus, the geometry
of the cavity is specified by the two aspect ratios

Γ =
d

h
= 1.96± 0.05 and Λ =

l

h
= 6.55 . (2.1)

The lateral sides of both windows are machined to match the radii of the moving
cylinders. All parts forming the cavity are mounted in an open rectangular container.
The front and rear windows as well as the bearings of the cylinders’ axes are fixed on
the sidewalls of the outer container. The bearings can be shifted slightly perpendicular
to the axes to enable the adjustment of the cavity. In this way the small gaps between
stationary and moving parts can be minimized in order to reduce through-flow effects.
The remaining gaps were nowhere larger than 40 µm. To avoid the accumulation
of air bubbles in the interior of the cavity due to a residual pumping effect, the
outer container, into which the cavity is immersed, is filled with the same liquid.
Observation of the flow is possible through the front window as well as through the
upper stationary lid. To prevent liquid from the bath spilling on the upper lid, it is
framed with a vertical shaft, which also gives it additional stability. The cylinders are
independently driven via tooth belts by two computer-controlled permanent-magnet
synchrone motors. The working fluid used was Bayer ‘Baysilone M20’ silicone oil of
kinematic viscosity ν = 0.236 cm2 s−1 at T = 20◦C. Since the kinematic viscosity may
change due to a temperature variation of a few degrees during a day of operation,
the temperature of the liquid bath was permanently measured by a thermocouple and
the Reynolds numbers

Rei =
ΩiRih

ν
(2.2)

were periodically updated to keep them at their prescribed values. The relative error in
Rei is estimated to be less than 1%. Flow visualization was accomplished by adding
small amounts of aluminium particles to the liquid. A thick light sheet mounted
horizontally and entering the cavity through the front window was used to view the
flow from above. A vertical light sheet through the top lid allowed the cross-section
of the flow to be viewed from the front window. Since the transition between different
flow patterns is in most cases characterized by a sudden jump, visual observation
was sufficient to detect the transition points within the accuracy of the given pair
of Reynolds numbers. If not mentioned otherwise the error is within the size of the
plotted symbols. Several tests have been made regarding the influence of the gap
width between the stationary and moving boundaries. By lifting the upper lid in a
defined manner the height of the cavity was artificially increased by up to 0.6 mm.
A change in the relative size of the resulting gaps did not change qualitatively the
experimental results.
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Figure 1. Sketch of the cavity and coordinate system.

3. Numerical methods
For a numerical analysis of the nonlinear cavity flow we use the model of an

incompressible Newtonian fluid. The Navier–Stokes and continuity equation for the
velocity u = (u, v, w) and pressure p are

∂tu+ u · ∇u = −∇p+ ∇2u , (3.1a)

∇ · u = 0 , (3.1b)

where we have used the viscous scales h, h2/ν, ν/h, and ρν2/h2 for length, time, velocity
and pressure, respectively. The conditions imposed on the boundary of the rectangular
domain occupied by the fluid (figure 1) are

v =

{
Re1

−Re2
on x =

{
−Γ/2
+Γ/2

, (3.2a,b)

u = w = 0 on x = ±Γ/2 , (3.2c,d)

u = 0 on y = ±1/2 , (3.2e,f)

and the periodicity condition in the z-direction involving the wavelength λ as a
parameter

u(z) = u(z + λ) . (3.3)

The end condition in the experiment corresponds to

u = 0 on z = ±Λ/2 . (3.4)

The Navier–Stokes equations (3.1a, b) have been unconventionally non-dimen-
sionalized by constant diffusive scales, because a scaling using either one of the
two different Reynolds numbers cannot appropriately describe the velocity scale for
arbitrary Reynolds number combinations with Re1 6= Re2. Moreover, the introduction
of the additional parameter Re1/Re2 is avoided.

The numerical methods used to calculate the steady two-dimensional basic flow
(∂t = ∂z = w = 0) and its linear stability with respect to arbitrary time-dependent
disturbances are identical to those employed by Wanschura et al. (1995) to calcu-
late the stability of toroidal vortex flows in cylindrical volumes, except for minor
modifications to adapt the code to a Cartesian rather than a cylindrical coordinate
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system. The reader is referred to Wanschura et al. (1995) for details of the numerical
treatment. In the following the solution methods are briefly summarized.

These basic flows (u0 = (u0, v0, 0), p0) are calculated using a second-order finite dif-
ference method on an equidistant grid in the y-direction and a Chebyshev collocation
method on Gauss–Lobatto points in the x-direction. The discretized set of nonlinear
equations for the unknowns is solved by Newton–Raphson iteration. Once a basic
state is obtained, it is used as the parametric input for a linear stability analysis. The
linearized equations for the deviations (u, p) from the basic state

∂tu+ u0 · ∇u+ u · ∇u0 = −∇p+ ∇2u , (3.5a)

∇ · u = 0 , (3.5b)

subject to no-slip and no-penetration boundary conditions on the rigid walls and
periodic boundary conditions in the z-direction (3.3) are solved using normal modes u(x, y, z, t)

v(x, y, z, t)
w(x, y, z, t)
p(x, y, z, t)

 =

 û(x, y)
v̂(x, y)
ŵ(x, y)
p̂(x, y)

 e(σt+ikz) + c.c. , (3.6)

where k = 2π/λ is the disturbance wavelength. The same discretization as for the
basic state is applied to (3.5) to obtain linear algebraic equations for (û, v̂, ŵ, p̂). The
resulting generalized eigenvalue problem is solved by IMSL routines calculating all
eigenvalues σ (complex growth rates). Once the most dangerous mode has been
identified, the respective eigenvalue is traced by inverse iteration. The neutral mode
and the stability boundary are found by varying Re1 and Re2 such that Re(σ) = 0.

The discontinuity of the boundary conditions in the corners between stationary
and moving boundaries requires special attention. Koplik & Banavar (1995) showed
that a realistic continuum modelling of the corner region should take into account a
local non-Newtonian behaviour to remove the stress singularities at (x = ±Γ/2, y =
±1/2). To overcome this difficulty the problem is regularized by using the boundary
conditions

v =


1
4

[
1− cos

(
10π

(
y + 1

2

))]2
if y 6 −0.4

1 if −0.4 6 y 6 0.4
1
4

[
1− cos

(
10π

(
y − 1

2

))]2
if y > 0.4

×
{

Re1

−Re2
on x =

{
−Γ/2
+Γ/2

, (3.7a,b)

instead of (3.2a,b). This regularization is much less severe than that employed
previously by Shen (1991). Test calculations yielded a difference in the critical
Reynolds number for symmetrical driving (Re1 = Re2) of less than 0.01% when the
smoothing region at each corner is reduced from 10% to 2.5%. The grid convergence
of the two-dimensional base flow and the linear stability analysis is found to depend
on the Reynolds numbers and on the particular base state under investigation. Using
100 vertical finite difference and 30 horizontal Chebyshev collocation points the
numerical error in the critical values is estimated to be less than 0.5% for the cat’s
eye flow, while the error is less than about 3% for the two-vortex state, which exhibits
higher velocity gradients. Both types of base flow will be defined further below. The
error estimates have been obtained by comparison with calculations using 200 by 40
grid points.
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4. Results
For a comparison of experimental and numerical results it must be kept in mind

that the boundary condition (3.4) corresponding to the experiment is different from
the periodic boundary condition (3.3) used in the numerical calculations. While the
experimental flow is always three-dimensional there exist two-dimensional flows for
(3.3).

The three-dimensionality of the experimental flow is caused by the rigid boundary
conditions on z = ±Λ/2. The endwall-induced flow has distinct characteristics. In
the limit of creeping flow deviations from the ideal two-dimensional flow will decay
exponentially with the distance from the sidewalls on a characteristic length scale of
O(1) (in the present units). In addition, for high Reynolds numbers inertial effects
will lead to a secondary flow of Bödewaldt type (Bödewaldt 1940). The axial velocity
w can become quite strong even away from the endwalls. Therefore, the flow is
two-dimensional only in the midplane z = 0 due to its mirror symmetry. Owing to
the deceleration effect of the endwalls the flow velocities in the midplane, however,
are generally smaller than in the absence of endwalls (de Vahl Davis & Mallinson
1976).

Here we are interested in the bulk fluid motion far away from the endwalls. In
order that the three-dimensional endwall-induced flow at given Reynolds numbers
be vanishingly small, one would have to consider the central regions near z ≈ 0 in
cavities with increasingly large aspect ratios Λ. Therefore, endwall effects cannot be
avoided in practice. In many cases they are, however, sufficiently small beyond a
distance of a few characteristic length scales from the endwalls. A similar problem
arises, e. g., in experimental realizations of the Taylor–Couette problem, in which
Ekman vortices are induced by the rigid collars axially bounding the annular gap
(Alziary de Roquefort & Grillaud 1978; Di Prima & Swinney 1981).

Our comparison of the two-dimensional numerical solutions with the three-dimen-
sional cavity flow is based on the assumption that the secondary endwall-induced
three-dimensional flow is only a small perturbation of the two-dimensional primary
flow in the central part of the cavity. The validity of this assumption can be assessed
by comparing calculated two-dimensional velocity profiles with the corresponding
measured velocity fields. An example is given in figure 5 below. From our measure-
ments and visual observations we conclude that the experimental flow near in the
centre of the cavity is quasi-two-dimensional and may be reasonably well described
by the two-dimensional numerical solution.

In the following we consider steady flows and both Reynolds numbers being
positive. Then the left wall moves upward while the right wall moves downward as
indicated in figure 1.

4.1. Two-dimensional flows, Re1 = Re2

In §§4.1–4.5 we consider the case when both Reynolds numbers are equal. For
brevity we denote Re = Re1 = Re2. Any changes of the Reynolds numbers in
the experiment have been made quasi-steadily and simultaneously for both Re1 and
Re2. For Γ = 1.96 and small Reynolds number the flow in the midplane of the
cavity is steady and consists of two vortices co-rotating in a clockwise direction.
The numerical streamlines for Stokes flow are shown in figure 2(a). On increasing
the Reynolds number up to Re ≈ 200 the strength of both vortices increases, but
their shapes do not change qualitatively. Streamlines of the steady flow in a vertical
cross-section at z = 0 are shown in figure 2(b) for Re = 230. The projection of the
experimental streamlines onto the (x, y)-plane is nearly constant over most z-stations
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of the cavity. Minor changes are visible only close to the endwalls at z = ±Λ/2.
The corresponding numerically calculated two-dimensional streamlines for a similar
Reynolds number (Re = 240) are displayed in figure 2(c). Both patterns show a good
agreement. It is also seen that the flow pattern at Re = 230 does not deviate much
from the Stokes flow pattern (figure 2a): the vortices become slightly asymmetric with
respect to y = 0, their diameter in the x-direction decreases with Re, and two small
regions of separated flow appear on the stationary walls, within which the fluid is
nearly stagnant (ψmin = −26.29, ψmax = 0.142).

As the Reynolds number is further increased quasi-statically in small steps (the
time interval between successive variations of Re was 2 min, roughly corresponding
to the lateral momentum diffusion time τd = d2/ν), a jump transition occurs in
the experiment at Re(0+) = 232 to a flow state in which the two distinct vortices
get involved with each other and partly merge. There remain two small regions
which, in the projection, appear as nearly closed streamlines separated by a separatrix
streamline around which most of the flow is circulating clockwise (figure 3a). The
interior region of separated flow is characterized by two elliptical and one hyperbolic
stagnation point and takes the form of cat’s eyes. The main part of the cat’s eye flow
is topologically equivalent to the two-vortex flow. On a quasi-steady decrease of the
Reynolds numbers the flow switches back from the cat’s eye to the two-vortex state
at Re(0−) = 224, thus forming a hysteresis loop. Since the fluid motion is unique in
the limit of vanishing Reynolds number, the appearance of the cat’s eye flow must
be an inertial effect. The cat’s eye flow is essentially two-dimensional, except for a
small region of extent . 1 in the z-direction from the endwalls at z = ±Λ/2. The
projection of the streamlines onto the (x, y)-plane changes from the cat’s eye pattern
in the bulk to the basic two-vortex pattern in the direct vicinity of the endwalls.

The observed experimental behaviour is consistent with the structure of the solution
manifold of the two-dimensional numerically calculated flow. The two-vortex solution
was traced by increasing the Reynolds number in small steps (typically ∆Re = 20)
using the previously calculated solution as the initial guess for the Newton iteration.
At Re = 427 ± 5 (for a grid resolution of 100 × 45) the Newton iteration ceased to
converge even for Reynolds number increments as small as ∆Re = 1. The breakdown
of the iteration can be understood by examining the behaviour of some flow quantity
as a function of Γ and Re. It is found that the solution surface is locally s-folded.
The fold is illustrated in figure 4, where we have plotted the shear stress on the
moving wall at x = Γ/2, y = 0 as a function of the Reynolds number for Γ = 1.96.
The solution curve turns back sharply at Re(0+) = 427 and turns forward again at
Re(0−) = 234.3. The solutions in the region of non-uniqueness belonging to high (cat’s
eye flow) and low (two-vortex flow) shear stress on the moving wall have been found
by varying Γ at constant Re. The solution with intermediate shear stress has been
obtained by random initial perturbation of the cat’s eye flow solution. A stability
analysis reveals that both the two-vortex and the cat’s eye flow state are linearly stable
to infinitesimal two-dimensional disturbances, whereas the solution with intermediate
shear stress is unstable. The streamlines of the unstable solution (not shown) look
like an average of the cat’s eye and two-vortex patterns.

The numerically calculated streamlines corresponding to the cat’s eye state are
plotted in figure 3(b) for Re = 257, which corresponds to neutral three-dimensional
stability (see §4.2). These streamlines are very close to the numerical ones for Re = 233
and they also show a good agreement with the experimental result at the midplane
(figure 3a). Vertical velocity profiles v(x, y = 0) of the two-vortex (Re = 200) and
the cat’s eye flows (Re = 240) at a distance ∆z = 1.7 from the endwall are plotted
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Figure 2. Basic flow for Γ = 1.96 and symmetrical driving Re = Re1 = Re2. (a) Numerical
streamlines of the Stokes flow. (b) Projection of the experimental streamlines at z = 0 for Re = 230.
(c) Numerical streamlines for Re = 240 (The streamlines have been rescaled in the separated region
for better visibility.) The x-axis is scaled in units of d.

in figure 5. The numerical data for the two-vortex flow compare well with the
experimental data. There is also a reasonable agreement between the numerical cat’s
eye solution and the measured values.
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Figure 3. Basic cat’s eye flow for Γ = 1.96 and symmetrical driving Re = Re1 = Re2. (a) Projection
of the experimental streamlines at z = 0 for Re = 233. (b) Numerical cat’s eye solution for Re = 257.
The full straight lines represent local coordinate axes and the dotted line is the strain direction at
x = y = 0. (c) Numerical cat’s eye solution for Re = 800. The x-axes are scaled by d.
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Figure 4. Shear stress ω := ∂v/∂x at (x = Γ/2, y = 0) as a function of the Reynolds number for
Γ = 1.96. The dashed line indicates an unstable solution. The asterisk and the plus mark the linear
stability boundaries of the cat’s eye flow (Re(1)) and the two-vortex flow (Re(2)), respectively.
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Figure 5. Velocity profiles v(x) of the numerical two-vortex flow at Re = 200 (full line) and cat’s
eye flow at Re = 240 (dashed line). Velocity data measured by LDA at a distance ∆z = 50 mm
from the endwall are for: +, two vortex, Re = 200; �, cat’s eye, Re = 240.

Even though the internal cat’s eye structure vanishes continuously on a further
increase of the Reynolds number, giving way to a single vortex (an example is shown
in figure 3c), we shall keep the notion of cat’s eye flow and two-vortex flow to discern
both types of base flow.

The agreement of the two-dimensional numerical and the quasi-two-dimensional
experimental flow structures indicates that the combined effects of curvature of the
moving sidewalls, endwall effects, and other imperfections (slight asymmetry in the
experimental patterns) have a small influence on the flow pattern itself. In fact,
the projections of the experimental quasi-two-dimensional streamline patterns do not
change much over the major part of the cavity length (in the z-direction). Which of
the two solutions is realized in the experiment, on the other hand, depends on the
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Figure 6. Region of non-uniqueness of the basic two-dimensional flow (full lines) bounded by Re(0+)

(upper existence Reynolds number for the two-vortex state) and Re(0−) (lower existence Reynolds
number for the cat’s eye state) for symmetrical driving. The asterisk indicates the bifurcation point.
The dotted line is the linear stability boundary Re(1) of the cat’s eye flow. It intersects with Re(0−)

at Γ ∗ = 2.283, Re∗ = 334. The experimental aspect ratio Γ = 1.96 is shown as a dashed line.

time history and it may also depend on the imperfections, if the control parameters
(here Re and Γ ) are close to folds of the solution manifold, i.e. near catastrophe
points. Here, the numerically determined lower transition Reynolds number Re(0−) is
only 5% larger than the experimental Reynolds number for which the flow changes
from cat’s eye to two-vortex flow, while the numerical value Re(0+) is 184% larger
than the experimentally observed transition Reynolds number. These differences
may be explained by considering the shape of the region of non-uniqueness in the
(Re, Γ )-plane obtained numerically. The area covered by the fold is shown as full
lines in figure 6. For Γ < 1.87 ± 0.01 the fold is absent and the solution depends
smoothly on the Reynolds number. The bifurcation point of the catastrophe is
located at the tip (asterisk in figure 6) Γf = 1.87 ± 0.01 and Ref = 205 ± 10 of
the triangular shaped region in figure 6. Thus the experimental aspect ratio is just
slightly supercritical (Γ > Γf). The fold opens rapidly for Γ > Γf . Originating

from (Ref, Γf), the lower bound for which the cat’s eye flow is found to exist (Re(0−))

depends linearly on Γ at least up to Γ = 3.5. Re(0−) can be determined quite
accurately. The fold corresponding to the upper Reynolds number limit for which the
two-vortex flow exists (Re(0+)) increases very rapidly with increasing Γ for Γ > Γf .
Therefore, slight uncertainties in the experimental Γ -value result in an extremely
large error for Re(0+). In fact, a much better agreement between the experimental and
numerical values for Re(0+) and Re(0−) would have been obtained if we had defined
the aspect ratio as Γ = 1.91 according to the minimum horizontal separation of
the rotating cylinder surfaces. Numerical values for Re(0+) and Re(0−) are given in
table 1.

4.2. Neutral modes and slightly supercritical flow

On a further increase of the Reynolds number the two-dimensional cat’s eye flow
becomes unstable to a stationary three-dimensional perturbation. The numerical
results for aspect ratio Γ = 1.96 are presented first.
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Γ Re(0−) Γ Re(0+)

1.87 205.0 1.87 205.0
1.96 234.3 1.92 237.5
2.01 250.0 1.94 272.5
2.17 300.0 1.96 427.5
2.50 400.0 1.98 > 1500
2.68 450.0
3.57 730.0

Table 1. Reynolds numbers Re(0−) and Re(0+) limiting the region of non-unique two-dimensional
flow as function of the aspect ratio Γ for symmetrical driving.

The linear stability boundary of the cat’s eye state as a function of the wavenumber
is shown in figure 7. The neutral curve is very flat and a large wavenumber band
becomes unstable. The critical value for the infinitely long system is Re(1)(Γ = 1.96) =
257.2 at k(1) = 2.25. The neutral disturbance mode is shown in figure 8. It consists
of stationary rectangular convection cells, a single cell comprising half a wavelength
in the z-direction. On the cell boundaries at constant z the w-component of the
disturbance velocity vanishes. The disturbance flow on one such a cell boundary at,
say z = z0 = 0, is shown in figure 8(a). The disturbance velocity has a maximum at the
centre of the cavity x = y = 0, the flow direction being approximately diagonal from
the downstream cavity corner of one side (x = Γ/2, y = −1/2) to the downstream
cavity corner of the other side (x = −Γ/2, y = 1/2). The corresponding backflow
takes place at z = z0 ± λ/2. Halfway between the cell boundaries, at z = z0 ± λ/4, u
and v vanish. Isolines of the w-component of the velocity at z = λ/4 are plotted in
figure 8(b). Figure 8(c) shows the disturbance flow in a horizontal cut at y = 0. The
flow in this plane takes the form of convection rolls. Therefore, the disturbance flow
within a single cell can be imagined as a vortex for which the vorticity vector lies
in the (x, y)-plane making an angle of approximately −π/8 with the positive y-axis.
Superposing the basic cat’s eye flow (figure 8d) with the critical disturbance flow of
arbitrary amplitude results in the flow pattern shown in the figure 8(e) for y = 0.

Upon an increase of the Reynolds number, the experimental flow develops contin-
uously out of the quasi-two-dimensional cat’s eye flow to a strongly three-dimensional
flow consisting of rectangular convection cells. The cells reveal themselves as planes
at constant values of z which appear as sharp dark lines when viewed through the top
lid. Thus the cell boundaries are easily detectable. One spatial period of the pattern
consists of two cells. The z-extent of a single cell thus corresponds to one half of a
fundamental wavelength.

The wavenumber realized in the experiment is restricted by the length of the cavity
and it is locally influenced by the rigid end conditions at z = ±Λ/2. Moreover,
since the transition for symmetrical driving (Re1 = Re2) is experimentally found to
be supercritical, the disturbance amplitudes are weak near the threshold. Therefore,
the exact transition point is difficult to determine visually. At Re(1) = 260 we find
the first indication of a transition. At this Reynolds number a single cell appears
approximately centred in the cavity at z ≈ 0. In the rest of the cavity the flow
is slightly three-dimensional, influenced by the front and rear boundaries, but no
distinct cell character is visible there. The size of the single cell (half a wavelength)
corresponds to a wavenumber k(1) = 2.2. The single cell state is shown in figure 9 for
Re = 270. The wavenumber of the corresponding periodic pattern would be k = 2.13.
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Figure 7. Linear stability curves for symmetrical driving: Re as function of the wavenumber k for
different aspect ratios (as indicated by labels).

The convection cell is unambiguously discernable from the basic cat’s eye state. Note
that in the Taylor–Couette problem Taylor vortices also first appear in the middle
between the endwalls (Alziary de Roquefort & Grillaud 1978).

The experimental threshold Reynolds number as well as the critical cell size are
in agreement with the theoretical values of the cat’s eye instability for symmetrical
driving, Re(1) = 257.2 and k(1) = 2.25. Moreover, the flow structure (deviation from
the cat’s eye state) within the cell is very close to that of the neutral mode of the
cat’s eye instability (figure 8). These facts together with the supercritical nature of
the bifurcation makes us conclude that the instability observed in the experiment
corresponds to the numerically calculated cat’s eye flow instability. It is a generic
property of supercritical hydrodynamic bifurcations that the structure of the most
unstable linear mode is conserved, although the amplitude and the phase may vary
slowly in space for slightly supercritical conditions (Cross & Hohenberg 1993).

The dependence of the numerically determined neutral curves on the aspect ratio
Γ is shown in figure 7 for Γ = 1.15, 1.19, 1.45, and 1.96. For high values of Γ , i.e.
for a large separation of the moving boundaries, the neutral curves are very flat and
a large wavenumber band opens up for Re > Re(1)(Γ ). The neutral curves are not
always symmetric with respect to k(1)(Γ ) over the full range of k. For Γ = 1.96, for
example, the neutral Reynolds number increases sharply near k = 3.3 and the neutral
curve may eventually turn back. It may be noted that the fastest growing linear mode
for Γ = 1.96 at Re = 300 has the wavenumber kfastest = 2.13±0.01 (not shown) which
is exactly the value detected experimentally for the slightly nonlinear one-cell state at
Re = 270. If the aspect ratio decreases from Γ = 1.96 the k-bandwidth of the linearly
unstable modes monotonically decreases and becomes quite narrow for Γ = 1.15.
The neutral surface as a function of the parameters k and Γ has a minimum of
Re(1) = 190.4 at Γ = 1.45± 0.05 and k(1) = 2.4± 0.05. The dependence of the neutral
Reynolds number on the aspect ratio is shown in figure 10(a) for a fixed wavenumber
k = k(1)(Γ = 1.96) = 2.25. Also shown is the critical Reynolds number, i.e. the
neutral Reynolds number minimized with respect to k. The critical wavenumber as a
function of the aspect ratio is shown in figure 10(b). The critical Reynolds number
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curve exhibits a minimum. For large aspect ratios the critical Reynolds number
increases slowly and the curve does not differ much from the neutral curve at fixed
k = k(1)(Γ = 1.96) = 2.25. A strong stabilization of the basic cat’s eye flow occurs,
however, when the aspect ratio approaches Γ = 1 from above.

4.3. Fully developed three-dimensional flow

On a quasi-steady increase of the Reynolds numbers the single stationary cell moves
off the centre z ≈ 0 and three more cells form simultaneously in the remainder of
the cavity. They are clearly established for Re & 280. The amplitude of the four
cells grows with Re. A typical cellular pattern illuminated in a horizontal plane at
y = 0 is shown in figure 11 for Re = 750. This type of steady pattern is very robust
and exists for a wide range of Reynolds numbers. The wavenumber corresponding
to the two inner cells is nearly constant over the investigated range of Reynolds
numbers. It decreases slightly from the experimental critical value of k = 2.20± 0.05
to k = 2.10±0.05 at Re = 600. This trend coincides with the wavenumber dependence
of the fastest growing mode. By assigning a wavenumber to the two inner cells we
anticipate that the experimental flow far from the boundaries would be periodic for
asymptotically large values of Λ.

Two equivalent three-dimensional flow patterns are possible. For Re1 = Re2 the
Navier-Stokes equations (3.1) are invariant under the transformation

(u, v, w, p, u0, v0, w0, p0, x, y, z, t) −→ (−u,−v, w, p,−u0,−v0, w0, p0,−x,−y, z, t)
(4.1)

for both the experimental ((3.2),(3.4)) and the numerical ((3.2),(3.3)) boundary condi-
tions. The transformation corresponds to a rotation by π about the axis x = y = 0.
While the basic state equations are invariant under this rotation, a periodic pattern
like (3.6) experiences a phase shift in the z-direction by half a wavelength ∆z = ±π/k.
Since this symmetry also holds for basic states that are perturbed by a nonlinear
three-dimensional endwall-induced secondary flow, as in the current experiment, two
different nonlinear three-dimensional convective states which differ by a phase shift
of π are equally possible when Re1 = Re2. Both flow states are in fact realized
experimentally. Which state prevails for long times t→ ∞ depends on the Reynolds
number histories Rei(t). Note that this symmetry is removed when Re1 6= Re2. In this
case both states will differ from each other (see further below).

The associated wavenumber of the inner cells of the four-cell flow need not
necessarily be the one that would be selected in the absence of endwalls. Moreover,
as seen from the linear stability analysis, the k-band of linearly unstable modes
gets larger as Re increases. Thus it should be possible to realize flow states with
a different number of cells (n 6= 4). In fact, such states are found. In figure 12 a
five-cell state viewed from the top is shown at Re = 500. Owing to the symmetry
(4.1) two five-cell states exist, differing only by a 180◦ rotation around x = y = 0.
Since the middle cell is separated symmetrically from the boundaries by two other
cells, it is least influenced by the imperfect end conditions and therefore best suited
to demonstrate the three-dimensional flow structure within a single cell. In figure
13(a–c) the projections of the streamlines within the light sheet are shown, taken
at three different vertical planes within the middle cell, at the rear cell boundary
(z = −λ/4), at the centre of the cell (z = 0), and at the front boundary (z = λ/4).
At z = 0 the centre of the main vortex is located at the centreline x = y = 0 of
the cavity. For z = −λ/4 the apparent vortex centre is located very close to the
right-hand moving wall (x = Γ/2) and for z = λ/4 it is close to the left-hand moving
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Figure 8. (a)–(c) For caption see facing page.
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Figure 8. Neutral mode of the cat’s eye base flow for Γ = 1.96, k = k(1) = 2.25, and Re(1) = 257.2
(symmetrical driving). (a) u, v in the (x, y)-plane at z = 0; (b) contour lines of w in the (x, y)-plane
at z = λ/4; (c) u, w in the (x, z)-plane at y = 0; (d) basic cat’s eye flow at y = 0; (e) superposition
of the basic flow (d) with the disturbance (c) of arbitrary amplitude at y = 0. The x-axis is scaled
by d.

wall (x = −Γ/2). For the second degenerate flow state the corresponding positions
are obvious. The vortex centre thus makes a zigzag line in the (y ≈ 0)-plane which
is also visible in figures 11 and 12 as the bright diagonals within each cell. The
diagonals correspond to regions of the nearly vanishing horizontal (x, y) velocities in
figure 8(e). These flow characteristics equally apply to the supercritical flow with four
cells.

The five-cell state is stable for a large range of Reynolds numbers. On decreasing
Re in steps of ∆Re = 1 and time intervals of 3 min, after every change the five-cell
flow turned out to be stable down to Re = 342± 2. Weaker ramps may have resulted
in slightly smaller values of the minimum Reynolds number. However, weaker ramps
become extremely time-consuming (the characteristic momentum diffusion time along
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Figure 9. A single convection cell at Re = 270 slightly above the critical Reynolds number
(symmetrical driving) illuminated by a light sheet at y = 0. The associated wavenumber is k = 2.13.
The moving lid at the lower border moves towards the observer. The location of the cavity boundary
according to Γ = 1.96 is given by the frame. The tic marks indicate the cell boundary.
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Figure 10. Critical curves as function of the aspect ratio Γ for the instability of cat’s eye flow
(symmetrical driving). (a) Neutral Reynolds number for fixed wavenumber Re(1)(k = 2.25) (dashed)
and critical Reynolds number Re(1)(k = k(1)) (solid). (b) Critical wavenumber k(1).
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Figure 11. Fully developed four-cell state at Re = 750 for symmetrical driving. The moving lid at
the bottom border moves towards the observer. The frame indicates the cross-section of the cavity.
The light sheet at y = 0 entering from the right side causes a decay of the contrast to the left.

Figure 12. Five-cell state at Re = 500 for symmetrical driving. Conditions as in figure 11.

the cavity span is 25 min). The full existence range for five cell flow when Re1 6= Re2

has not yet been explored.

4.4. Linear instability of the two-vortex state

The two-vortex state is experimentally found to be stable for Re1 = Re2 < Re(0+).
It is not observed for Re1 = Re2 > Re(0+). As discussed above, this behaviour may
be either due to an effective aspect ratio less than Γ = 1.96, or due to a premature
transition. Therefore, no experimental information is available regarding the three-
dimensional instability of the two-vortex flow for symmetrical driving. In particular,
for aspect ratios larger than Γ & 2.0 the two-vortex state exists up to high Reynolds
numbers and its three-dimensional stability properties may become important. As
will be shown below, the linear stability of this flow state is crucial, when the driving
is not symmetric, i.e. for Re1 6= Re2. The properties of the two-vortex instability will
be presented, nevertheless, for Re1 = Re2 and Γ = 1.96. The linear stability analysis
shows that the two-vortex state becomes unstable at Re(2)(Γ = 1.96) = 259.5. The
instability is stationary with a critical wavenumber of k(2) = 1.68. This wavenumber
would permit approximately Λk/2π ≈ 1.75 wavelengths to fit into the cavity. The
neutral curve for Γ = 1.96 is shown in figure 14 as a function of the wavenumber.
The velocity field of the neutral mode on a cell boundary, where w vanishes, is
shown in figure 15. In this plane, the disturbance flow essentially consists of two
counter-rotating vortices located in the middle of the cavity well separated from the
moving lids. Obviously, the result of such a disturbance is to suppress one of the two
basic co-rotating vortices and to enhance the other one. Owing to the periodicity in
z, both vortices therefore become periodically varicose for supercritical driving, the
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(a)

(b)

(c)

Figure 13. Cross-sections through the five-cell state at Re = 500 (symmetrical driving). (a) Cell
boundary at z = −λ/4, (b) centre of the cell at z = 0, (c) cell boundary at z = λ/4. The flow is
circulating clockwise.
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Figure 14. Linear stability curve Re(2) as a function of the wavenumber k for aspect ratio
Γ = 1.96 and symmetrical driving (Re1 = Re2).
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Figure 15. Neutral mode of the two-vortex flow state in the (x, y)-plane, where w = 0 (Re1 = Re2).

thickening and thinning of each being out of phase by π. Since the basic state and
the neutral mode exhibit a stronger spatial variation than the respective fields of the
cat’s eye flow, a higher grid resolution is required to obtain reliable results. Here we
have used 40 horizontal and 200 vertical grid points for the two-vortex instability
calculations.

4.5. Physical instability mechanisms

To investigate the instability mechanisms that are responsible for the three-dimensional
pattern formation described in the preceding sections the Reynolds–Orr energy equa-
tion for the rate of change of the kinetic energy

∂tEkin = −D +

4∑
i=1

Ii (4.2)

is evaluated for the most dangerous three-dimensional mode of the respective two-
dimensional basic state. D is the rate of dissipation and the terms describing the
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interaction of the disturbance mode with the base flow are denoted by Ii:

D =

∫
V

(∇× u)2 dV , (4.3a)

4∑
i=1

Ii = −
∫
V

{
u2 ∂u0

∂x
+ uv

∂u0

∂y
+ vu

∂v0

∂x
+ v2 ∂v0

∂y

}
dV . (4.3b)

The derivatives and integrals over the volume V are calculated from the numerically
obtained basic and disturbance flow fields using second-order finite differences and
Simpson’s rule. The derivation of (4.2) and the evaluation of the integrals has been
described by Wanschura et al. (1995).†

First, we discuss the instability of the cat’s eye state. As a representative example
we consider the case Γ = 1.96 and k = k(1) = 2.25 for symmetrical driving (Re =
Re1 = Re2). In figure 16 all terms in (4.3) contributing to the rate of change of energy
are plotted as a function of Re for the mode with the largest growth rate. For small
Reynolds number the balance is dominated by the dissipation D. The integral I2

contributes most to the energy growth and becomes by far the dominant term when
the Reynolds number is increased beyond the critical value. The integral I2 describes
the amplification of horizontal disturbance velocity u by vertical disturbance flow
v perpendicular to the basic horizontal shear ∂yu0. The spatial distribution of the
integrand of I2 on the cell boundary at z = 0 is shown in figure 17. The amplification
occurs in the centre of the cavity with a clear maximum at x = y = 0, the hyperbolic
stagnation point of the cat’s eye flow. Clearly, there is a considerable horizontal shear
in this area (figure 3b). As can be seen from figure 8(a) the vertical disturbance flow
near x = y = 0 is positive, transporting negative base-state x-momentum (u0) from
the lower part of the cavity to the centre, where the x-momentum of the disturbance
(u) is also negative, thus amplifying it. An analogous explanation holds for the cell
boundaries at z = ±λ/2. The feedback is accomplished by the recirculation of the
disturbance flow mainly in the (x, z)-plane as described in §4.2 above (see figure 8c).

The instability mechanism of the two-vortex state is mainly due to a similar
process. The energy balance is shown in figure 18 for Re1 = Re2, Γ = 1.96, and
k = k(2) = 1.68. The instability is weaker than that of the cat’s eye flow in the sense
that the different contributions to the energy growth change only slowly with the
Reynolds number. The reason is that the basic flow does not change its structure
much with increasing Reynolds number. Here, the most destabilizing process is
described by I3. It corresponds to an amplification of the vertical disturbance velocity
v by horizontal transport of vertical shear ∂xv0 due to a horizontal disturbance flow
u. The basic state close to criticality shows three regions of vertical shear: both
boundary layers near the moving walls, and the region between both basic vortices
in the centre of the cavity. As can be seen from the space-resolved integrand of
I3 in the form of a double-peak in figure 19, the latter shear region provides the
energy for the critical disturbance. The other destabilizing contribution, I1, is the
amplification of u due to the deceleration of the basic velocity u0 near the separation
point on the stationary walls downstream from the moving lids. The regions of
amplification obtained from the combined space-resolved contribution of both I1 and

† The total enstrophy
∫
V

(∇× u)2 dV differs from the total rate of dissipation D =
∫
V

(∇u)2 dV by
a surface integral that vanishes, if the velocity is zero everywhere on the boundary. As pointed out
by a referee, more general conditions under which the enstrophy integral is equal to the total rate
of dissipation have been discussed by Raynal (1996).
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Figure 16. Energy balance of the most dangerous mode for the cat’s eye state as a function of the
Reynolds number for Γ = 1.96 and k = 2.25 (symmetrical driving). All terms are normalized by
the dissipation D. The vertical dotted line indicates the critical Reynolds number.
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Figure 17. Isolines of the local (positive) energy transfer rate from the basic cat’s eye state to the
neutral disturbance due to the process I2 shown at the cell boundary z = 0; Re = Re(1) = 257.2,
k = k(1) = 2.25.

I3 (not shown) are well localized close to both downstream separation points. Since
the neutral mode is approximately a double roll (figure 15) the feedback required for
an exponential growth essentially takes place in the same plane (constant z) contrary
to the cat’s eye instability.

4.6. Re1 6= Re2

Considerations are now extended to the more general case of asymmetrical driving.
Since the exchange of the Reynolds numbers (Re1,Re2) −→ (Re2,Re1) corresponds
to a rotation of the system by π around x = y = 0, all transition Reynolds numbers
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Figure 18. Energy balance of the most dangerous mode for the two-vortex state as function of the
Reynolds number for Γ = 1.96 and k = 1.68 (symmetrical driving). All terms are normalized by
the dissipation D. The vertical line indicates the critical Reynolds number.
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Figure 19. The local (positive) energy transfer rate from the basic two-vortex state to the neutral
disturbance due to the process I3 shown on the cell boundary (z = 0); Re = Re(2) = 253,
k = k(2) = 1.68 (only the peak level lines are shown for clarity).

must be symmetrical with respect to the line Re1 = Re2. The full theoretical stability
diagram for Γ = 1.96 is shown in figure 20.

Consider first the numerical results for the infinitely long system and Γ = 1.96. The
curve limiting the existence range of the cat’s eye flow (Re(0−)

2 (Re1)), the dashed curve
in figure 20, has been obtained by interpolating a representative set of transition
points (table 2). The full curve in figure 20 is the neutral curve for the cat’s eye flow
calculated at a fixed wavenumber k = k(1) = 2.25 (see also table 3).

In the parameter range shown this curve practically coincides with the critical
curve (k = k(1)) (compare figure 10a). Therefore, the minimization with respect to
the wavenumber k of the Reynolds number varied was omitted. The validity of this
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Figure 20. Transition boundaries for Re1 6= Re2 and Γ = 1.96 (numerical results). Full line: linear
stability boundary of the cat’s eye flow. Dashed line: lower existence boundary of the cat’s eye state.
Asterisk: upper existence limit (Re(0+)) of the two-vortex state for symmetrical driving. Dash-dotted
line: linear stability boundary of the two-vortex flow.

approximation was checked for Re1 = 300. The relative difference in Re(1)
2 was only

0.02%.
The neutral stability boundary of the two-vortex state (dash-dotted line in figure 20;

table 4) behaves differently. In particular, for sufficiently high asymmetry δRe =
Re2 − Re1, this instability is the most dangerous one and the basic two-vortex flow
state becomes three-dimensional on an increase of the Reynolds numbers before a
transition to the cat’s eye flow is possible. As before, the neutral curve was calculated
for a constant wavenumber. Here we used k = k(2) = 1.68. It was checked that
the minimization with respect to k would at most yield a small correction of ±3
in Re(2)

2 . Owing to the comparatively high grid resolution required for the linear
stability analysis of the two-vortex state, only a few neutral Reynolds numbers have
been computed (cf. table 4). The curve shown is an interpolation. The typical flow
structures of both the basic two-vortex and the basic cat’s eye flows do not change
when δRe is increased moderately. Therefore, the same instability mechanisms as
discussed in §4.5 for symmetrical driving hold for each type of base flow. While
the cat’s eye flow and its instability can be found close to the diagonal Re1 = Re2,
it is interesting to note that the linear stability boundary reaches a finite value of
Re(2)

2 = 454 when Re1 → 0 and vice versa. We have confirmed that even for Re1 = 0
the neutral mode and the instability mechanism for the two-vortex flow instability at
Re2 = 454 is qualitatively the same as for symmetrical driving. In this case only the
lower right peak of the double peak of the integrand of I3 (figure 19) remains. It
must be concluded that the two-vortex instability is not a result of an interaction of
two vortices rather than a property of a single lid-driven vortex.

The theoretical values obtained for the infinitely long system are now compared
with the experimental results. All experimental transition points have been obtained
by keeping one Reynolds number fixed while varying the other one. In the following
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Re1 Re(0−)
2

400 284
360 261
320 243
280 229
234.3 234.3
229 280
243 320
261 360
284 400

Table 2. Lower existence boundary of the cat’s eye flow state Re(0−)
2 as a function of Re1 for

asymmetrical driving and Γ = 1.96.

Re1 Re(1)
2 Re1 Re(1)

2 Re1 Re(1)
2

257.2 257.2 305.0 259.2 355.0 288.3
260.0 255.8 310.0 261.5 360.0 291.8
265.0 253.2 315.0 263.9 365.0 295.5
270.0 252.0 320.0 266.5 370.0 299.2
275.0 251.6 325.0 269.2 375.0 303.0
280.0 251.9 330.0 272.1 380.0 306.9
285.0 252.7 335.0 275.1 385.0 310.9
290.0 253.9 340.0 278.3 390.0 314.9
295.0 255.4 345.0 281.5 395.0 319.0
300.0 257.2 350.0 284.8 400.0 323.3

Table 3. Neutral Reynolds numbers for the cat’s eye flow instability Re(1)
2 as a function of Re1 at

k = 2.25 and Γ = 1.96.

increasing or decreasing the Reynolds number means a change of either Re1 or Re2

while the other Reynolds number (Re2 or Re1) is kept constant. Critical values have
been determined by variation of one Reynolds number in steps of ∆Re = 1 and
waiting for the lateral diffusion time τd ≈ 2 min between successive Reynolds number
changes. For the pure two-dimensional flow transitions this time span is sufficient for
a relaxation to the new state. But the cellular flow and the endwall effects are three-
dimensional. The respective diffusive time scale in the z-direction is approximately
τl = 25 min. It was checked, however, that waiting for τ = τd was sufficient, in most
cases, to determine the final pattern. However, close to the supercritical instability for
Re1 ≈ Re2 longer time steps have been employed. Still, the uncertainty in the visually
determined threshold values close to the symmetry axis in figure 21 is estimated to
be of ±7 on a Reynolds number scale. The error bar is smaller for larger asymmetry.
For (Re1,Re2) & 350 the instability is significantly hysteretic and the threshold values
are reproducible up to the size of the symbols.

The filled circles in figure 21 represent the transition from the two-vortex flow
to the cat’s eye flow (Re(0+)) when increasing the Reynolds number. The reverse
transition back from cat’s eye flow to two-vortex flow (Re(0−)) during a decrease
of the Reynolds number is indicated by open circles. In the cat’s eye state, which
is linearly stable for Reynolds numbers slightly beyond the two-dimensional transi-
tion curve, the flow is nearly two-dimensional over most parts of the cavity, even
when the asymmetry δRe is large. As an experimental fact, the endwall imperfec-
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Re1 Re(2)
2

454.0 0.0
450.0 6.5
400.0 100.9
350.0 159.1
259.5 259.5
159.1 350.0
100.9 400.0

6.5 450.0
0.0 454.0

Table 4. Neutral Reynolds numbers for the two-vortex flow instability Re(2)
2

as a function of Re1 at k = 1.68 and Γ = 1.96.

tions are much stronger for the two-vortex state. The vortices of the two-vortex
flow for large δRe are highly curved near both ends of the cavity at z = ±Λ/2
even below the critical threshold. It is observed that the vortices of the two-
vortex state are also wavy along their axes in the bulk, except when Re1 = Re2.
Thus, we did not find a sharp transition from two-dimensional two-vortex flow
to three-dimensional flow as expected along the dash-dotted theoretical curve in
figure 20. This observation is interpreted as the consequence of a strongly im-
perfect bifurcation due to endwall effects. For that reason no experimental sta-
bility boundaries for the two-vortex state are given here. The two-vortex state
may be more susceptible to three-dimensional endwall-induced perturbations due
to the comparatively long wavelength of the critical mode. Endwall effects on the
two-vortex state can only be avoided by using larger aspect ratios, Λ > 10, at
least.

Once the cat’s eye flow is established, it is stable for a certain range of Reynolds
numbers. On increasing the Reynolds number beyond the line indicated by filled
squares in figure 21 a transition to convective cells (n = 4) occurs. Since the symmetry
(4.1) does not hold for asymmetrical driving, the degeneracy of the two possible
patterns is removed. We observe that one of the supercritical states is uniquely
selected at the onset of the cellular flow when Re2 > Re1. The other state is selected
for Re1 > Re2. In the preferred state, the apparent vortex axis of the endwall cell
originates from the corner made up of the endwall at, say z = Λ/2, and the fastest
moving wall, i.e. the wall corresponding to the higher Reynolds number. If one
endwall were at z = 0, the pattern shown in figure 8(e) would correspond to the
prefered state, when Re2 > Re1. Once a four-cell state has been established, for
say Re2 > Re1, the Reynolds numbers can be changed quasi-statically along a line
Re1 + Re2 = const. When crossing the line Re1 = Re2, however, the pattern which
has evolved continuously will no longer be the favoured one. Finally, the transition
to cat’s eyes or supercritical two-vortex flow occurs on the other side of the stability
diagram (Re1 > Re2). Except for a small region near this stability boundary (open
squares in figure 21) the original four-cell pattern prevails. This is interpreted as a
weak selection, i.e. the effective asymmetry between both possible patterns is small
and both patterns have practically the same range of existence. Patterns with five
cells were never found for quasi-static variations of the Reynolds numbers. No flows
with a number of cells other than four or five were observed.

The transition point from cells to the cat’s eye state during a decrease of Re
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Figure 21. Transition boundaries for Re1 6= Re2 and Γ = 1.96 (experimental results). •, two-vortex
→ cat’s eye; ◦ cat’s eye → two-vortex; � cat’s eye → three-dimensional cells, � three-dimensional
cells → cat’s eye. The theoretical results are included as lines: – – –, cat’s eye → two-vortex; ——,
linear instability boundary of the cat’s eye flow.

is indicated by open squares in figure 21. With increasing asymmetry (δRe) the
transition gets more and more hysteretic. It is anticipated that the instability is
strictly supercritical only when Re1 = Re2. For Reynolds numbers Re & 470 the line
indicated by open squares intersects the curves of transition between supercritical
two-vortex and cat’s eye flow. Thus, if one Reynolds number is larger than Re & 470,
the cellular pattern breaks down on a decrease of Re to a supercritical two-vortex
flow which is already three-dimensional.

The lines in figure 21 represent the theoretical curves. Good agreement with the
experimental data is obtained for the three-dimensional instability of cat’s eye flow
at symmetrical driving (low Re). For high Reynolds numbers cellular flow is found
to exist for a larger range of Reynolds numbers than predicted by the linear stability
analysis. This discrepancy is not a contradiction, however, because the transition is
hysteretic. If the hysteresis for Re1 6= Re2 is a property of the ideal infinitely long
system, the presence of endwalls and other imperfections may cause finite-amplitude
perturbations so that cells can appear subcritically prior to the linear stability limit.

The difference of O(20) on a Reynolds number scale between the numerically
predicted existence range of cat’s eye flow (dashed line in figure 22) and the experi-
mentally determined curve (open circles) has been interpreted in terms of the sensitive
dependence of these curves on the aspect ratio (§4.1). Since the Reynolds numbers
have been controlled to within 1%, the remaining asymmetry in the experimental data
points is most likely to be due to minute aspect ratio changes along the z-direction.
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Figure 22. Two-dimensional cat’s eye flow for Γ = 3.3 for symmetrical driving at Re = 800. The
flow is linearly unstable. The x-axis is scaled by d.

5. Discussion
First, the results obtained for the instability of the two-vortex state are compared

with existing numerical results for the one-sided lid-driven cavity. Since the two-vortex
instability mechanism is not altered for one-sided driving (Re1 = 0), the instability is
independent of a second vortex in the cavity. This result appears to be in qualitative
agreement with that of Ramanan & Homsy (1994) for Re1 = 0 and Γ = 1 who found
a critical value of Re(2)

2 ≈ 600 at k ≈ 2 for a resolution of 64 × 64 finite difference
points. In fact, the location and the shape of the contour lines of the sum of the
integrands of the energy integrals I1 and I3 for Re1 = 0 and Γ = 1.96 are nearly the
same as those in figure 8(a) of Ramanan & Homsy (1994). During test calculations
for Γ = 1 we obtained a similar result using a low resolution of 40× 15 grid points.
However, the stationary threshold value did increase with the resolution and for
200 × 40 finite-difference/collocation points we obtained Re(2)

2 (k = 2) > 2500. We
must conclude that the result of Ramanan & Homsy (1994) is not accurate, because
the stability limit for the one-sided lid-driven cavity flow with Γ = 1 is highly grid-
dependent. Obviously, the critical mode is significantly stabilized by the rigid wall
being close to the vortex for Γ = 1. This result is compatible with the existing
experimental data (Koseff & Street 1984). The typical Taylor–Görtler-like vortices
found in experiments and numerical simulations of the classical cavity problem have
a much smaller wavelength than the critical mode of the two-vortex flow for Re1 = 0
and Γ = 1.96 which is a large-scale mode with a wavelength λ = 3.7.

Next, we turn to the two-dimensional transition from the two-vortex to the cat’s eye
state on a decrease of Γ . For Γ = 1.96 the diameter D of a single vortex (Re2 = 0),
defined as the distance along y = 0 from x = −Γ/2 to the separating streamline of
the vortex, decreases monotonical from D ≈ 1.4 for creeping flow through D = 1.22
at Re1 = 100 to the constant value D = 0.94 in the range 500 < Re1 < 103. For
Re1 = 103 the vorticity is already nearly constant in the vortex core. Therefore, the
vortices generated by both moving walls at high Reynolds numbers individually have
the tendency to attain a nearly unit aspect ratio. We find that the flow with two
square vortices exists for high Re and cavity aspect ratios larger than Γ & 2 (see
figure 6). There is evidence that the Reynolds number Re(0+)(Γ ) describing the upper
existence limit for the two-vortex state diverges for Γ ↑ 2. This is about the aspect
ratio for which the separating streamlines of both vortices would touch on a decrease
of Γ leading to a two-dimensional abrupt structural change of the flow for Re > Ref .
In the present experiment this transition is a dynamic process taking O(1) s. It may be
viewed as a partial vortex merging in a cavity. An analogy to the merging of vortex
patches in unbounded ideal flow (Melander, Zabusky & McWilliams 1988), however,
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cannot be directly established mainly due to the different boundary conditions in
both cases.

Based on a scaling consideration Pan & Acrivos (1967) argued that the extent in
the x-direction of the primary vortex driven by a single moving wall in a cavity of
infinite depth (Γ → ∞) should scale like Re1/2 for high Re. Such a behaviour is
not observed for the two-vortex state. If, moreover, this scaling were to hold for
the merged cat’s eye state, the lower existence curve Re(0−) for the cat’s eye state
should scale like Γ ∼ (Re(0−))1/2. This is not the case. Instead, a linear dependence
Re(0−) ∼ Γ is found.

The linear dependence of the lower existence curve for the cat’s eye state on the
Reynolds number can be explained as follows. In the limit of high Reynolds numbers
the fluid in the conventional boundary layer on to the moving wall at x = Γ/2 is
accelerated and released into the cavity in the form of a wall jet along the stationary
downstream wall at y = −1/2. The boundary layer thickness ∆ of a wall jet scales
like ∆ ∼ (x/Re)3/4 (Batchelor 1967), where x measures the distance from the origin of
the wall jet. In order that a recirculating flow occupying the whole cavity is sustained,
the wall jet must be entrained by the boundary layer of the moving wall on the
opposite side (x = −Γ/2). Here the jet, which has slowed down, is again accelerated
to form another wall jet in the opposite direction and on the opposite stationary wall
at y = 1/2. For this process to be effective it is required that the wall jets remain
confined sufficiently close to the rigid walls, i.e. the boundary layer thickness must be
less than a value ∆ 6 O(1), since the cavity height is O(1). The limiting case is thus
given by ∆(x = Γ ) ∼ (Γ/Re)3/4 = O(1). It follows that the limiting aspect ratio must
depend linearly on Re, i.e. Γ ∼ Re. This is the observed dependence. The numerical
results lead us to anticipate that the cat’s eye flow will persist for all aspect ratios
in the limit of high Reynolds numbers and symmetrical driving. We conclude that
the flow is not unique in the limit of high Reynolds numbers Re1 = Re2 → ∞ when
the aspect ratio is larger than a critical value Γ0 which was estimated above to be
Γ0 ≈ 2.0. An example for the cat’s eye flow (three-dimensionally unstable) in a large
aspect ratio cavity (Γ = 3.3) is given in figure 22 for Re1 = Re2 = 800. The wall jets
are clearly visible.

Finally, we consider the cat’s eye flow instability. At unit aspect ratio Γ = 1
and symmetrical driving, the centre of the vortex far away from the endwalls has
circular streamlines. This flow is linearly stable for the Reynolds numbers considered
(see figure 10a). When for high Reynolds numbers (Re > Ref) and symmetrical
driving the aspect ratio increases from unity, the cat’s eye flow develops continuously
from the square cavity flow. The shapes of the streamlines in the interior become
increasingly elliptic and the flow is rapidly destabilized (figures 6, 10a) even before it
develops the typical cat’s eye shape. Based on the following observations we conclude
that the instability of the cat’s eye flow is a manifestation of the elliptic instability
(Pierrehumbert 1986; Bayly 1986; Landman & Saffman 1987; Waleffe 1990). First,
both instabilities are stationary (ω(1) = 0) in the frame moving with the elliptic vortex.
Second, the energy transfer rate from the base flow to the disturbance is largest at the
centre of the vortex (cf. figure 17). There the flow is a superposition of a solid-body
rotation and a straining motion, for which the stream function can be written locally
as

ψ(x, y) = 1
2

(
(γ − ε) x2 + (γ + ε) y2

)
, (5.1)

where γ > 0 is the rotation rate, ε > 0 is the rate of strain, and the coordinate system
is slightly rotated (cf. figure 3b). A cat’s eye structure corresponds to ε > γ, indicating
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Figure 23. z-component of the vorticity (ωz) in the plane z = λ (cf. figure 8). The dotted line is the
strain direction at the centre of the cavity.

the dominating straining motion in the centre x = y = 0 for the cat’s eye flow. Third,
a striking similarity is the sharp stabilization of the present two-dimensional flow
when Γ → 1, and the stability of the unbounded elliptic vortex when the eccentricity
is zero. Fourth, the structure of the vorticity of both neutral modes is similar in both
cases. For the elliptic instability the z-component of the vorticity of the neutral mode
has extrema along the stretching plane which makes a 45◦ angle with respect to the x-
and y-axes (y = x in (5.1)). The same behaviour is found for the highly strained basic
cat’s eye flow at Γ = 1.96 for which the direction of the strain is given by the dotted
line in figure 3(b). As can be seen in figure 23 the strain direction nearly intersects with
the extrema of the z-component of the vorticity of the critical mode. Owing to the
present base flow structure (wall jets) the extrema are slightly displaced downstream.
The vorticity distribution is very close to those given by Pierrehumbert (1986) and
Waleffe (1990). Pierrehumbert (1986) showed that the instability in ideal fluids is
universal, acting on arbitrary small length scales. Here we find that k(1) = O(1) in
units of the cavity height h, in qualitative agreement with the viscous wavelength
cut-off found by Landman & Saffman (1987) for viscous elliptic eddies.

In addition to the similarities of the linear properties of both instabilities, the steady
highly nonlinear three-dimensional cellular cavity flow exhibits characteristics similar
to the transitional flow in the decay of an elliptic vortex to turbulence. During the
early stages of the decay of an elliptic vortex Lundgren & Mansour (1996) observed
that the vorticity field gets greatly distorted into sheet-like structures. These sheet-like
regions of concentrated vorticity are clearly visible in figure 13(a–c) as strongly curved
lines of projected particles traces.

Flows with elliptic streamlines evolve smoothly to hyperbolic stagnation point flow
when ε becomes larger than γ. For that reason the observed destabilization of the
strain-dominated cat’s eye flow in the cavity (ε > γ) can also be considered a viscous
realization of the instability of hyperbolic stagnation point flow in ideal fluids (Lifshitz
& Hameiri 1991).

The two-dimensional cat’s eye flow becomes unstable throughout its full existence
range (for all Re) when Γ > Γ ∗ = 2.283 ± 0.003, which is the aspect ratio for
which the three-dimensional instability curve crosses the lower existence curve for the
cat’s eye state (Re(0−)∗ = 334 ± 2.2) (figure 6). This property is not surprising, since
the base flow for large aspect ratios will be close to a plane shear flow in which
two-dimensional equilibria are usually unstable. The limit of large Γ may establish a
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correspondence between cat’s eye flow instability and the three-dimensional instability
of two-dimensional equilibria in plane shear flows.

In conclusion, we have shown that the flow in rectangular two-sided lid-driven
cavities with non-square cross-section exhibits different instabilities. The cellular
flow instability of the basic cat’s eye flow at low Reynolds numbers is not present
in one-sided lid-driven cavities. This type of flow offers the opportunity to study
the elliptic flow instability in detail, because the underlying base flow is stationary.
This is the major advantage of the present geometry. Previous experimental in-
vestigations of the elliptic instability typically considered the spin-down of the flow
in cylinders with elliptical cross-section suddenly stopped from rigid-body rotation
(see e.g. Gledzer & Ponomarev 1992), which has the disadvantage of being tran-
sient. The present results, moreover, may provide a key for the understanding of
three-dimensional shear-driven cavity flows as well as lid-driven cavity flows in other
geometries.
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in setting up the experiment. We also acknowledge constructive comments of the
referees. This work was supported by Deutsche Forschungsgemeinschaft under grant
number Ku896/5-1.
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